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ABSTRACT

/568

The equations of forced flexural motion are derived for a rocket-
boosted vehicle controlled by vectored thrust. Planar motion is assumed.
Motions involved in the system include flexural motion of the vehicle,
fuel slosh, and rotation of the engine nozzle. The buckling effects of
the tangential thrust component, and the longitudinal inertial and

aerodynamic forces are ignored. The aerodynamic forces are derived

from momentum theory. Forcing conditions which have been con-
sidered are those resulting from atmospheric motion, a sudden control

change, or an initial disturbance.

/%/é//

I. INTRODUCTION

This Memorandum presents a derivation of the equa-
tions of forced flexural motion of a rocket-boosted vehicle
controlled by vectored thrust. The intent in this Memo-
randum is to present the development of the equations
for forced motion of a rocket in a comprehensive deriva-
tion that does not include the detail that can be obtained
from other references (e.g., Ref. 1, 2, 3, 4).

The vehicle is assumed to have no roll motion and to
have isotropic inertial and aerodynamic characteristics
around any lateral axis. With these assumptions, consid-
eration of the three-dimensional motion of the vehicle is
unnecessary. In this Memorandum, it is assumed that the
motion of the vehicle is confined to a vertical plane.

It is assumed that the vehicle structure may be repre-
sented by an elastic beam having bending and shearing
flexibility. Sloshing of fuel in the fuel tanks is represented
by the motion of a simple pendulum attached to the
beam (Ref. 5). The engine nozzle may be rotated by a
command from the control system. Although the physical
parameters of the vehicle and of the atmosphere are
time-varying, it is considered here that they vary slowly

compared with the motion being studied. Thus, it will
be assumed that the physical parameters are constant,
with the result that the equations of motion will have
constant coeflicients.

In the analysis that follows, the properties of the
natural modes of flexural vibration of the beam with
slosh pendulum and engine nozzle locked are developed.
Expressions for the kinetic energy and elastic potential
energy of the system are written considering a general
planar motion involving the motion in the natural flexural
modes, the rigid-body motion of the system, and the
motion of the slosh pendulum and engine nozzle. Then,
forcing conditions resulting from atmospheric motion, a
sudden engine nozzle rotation, or an initial disturbance
are expressed as generalized forces corresponding to the
system coordinates, and the equations of motion for the
system are written using Lagrange’s equations. The
momentum method is used in developing the expressions
for the aerodynamic forces involved in the problem (Ref.
6, pp. 418-420). Finally, the equations of forced motion
are written in a nondimensional form.
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Il. PROPERTIES OF THE NATURAL FLEXURAL MODES

The system to be analyzed is composed of an elastic
beam, a slosh pendulum, and an engine nozzle. The
beam has bending and shear flexibility. The slosh pen-
dulum and nozzle are locked to the beam and are required
to have the bending slope of the beam at the attachment
points. The deflected system is shown in Fig. 1. The
characteristic of the system and its motion are defined
as follows:

EI = flexural rigidity of the beam

Iy = moment of inertia of nozzle around
hinge point

Is = Oz = moment of inertia of slosh pen-
dulum around hinge point

k’AG = shear rigidity of the beam

ly = distance from hinge point to center
of mass of nozzle

Iy = length of slosh pendulum
My = mass of nozzle
Ons = mass of slosh pendulum

r = radius of gyration of cross section of
the beam

wsp = bending deflection of beam
wg = shear deflection of beam
w = wp + ws = total deflection of beam
# = mass per unit length of the beam

Differentiation with respect to time and to position x
will be denoted by a dot and a prime respectively.

Consider the equilibrium of a differential element of
the beam as shown in Fig. 2, which defines the positive
sense of the bending moment M and the shear force S
in the beam. Also shown are the inertia force and moment
acting on the element. The bending moment and shear
force are related to the displacements by

M= Elw}
S = k'AGuw}

Equilibrium of the element requires that the sum of
forces and the sum of moments each vanish. Making use

NOZZLE
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4

Fig. 1. Deflected elastic system—slosh pendulum
and nozzle locked to beam
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Fig. 2. Free-body diagram—differential element of beam

of the preceding equations, the two equations of motion
of the beam result:

(EIw}) + KAGW, — prtidy = 0
(KAGWL) — uid = 0

The equations of motion above apply throughout the
beam, except at the points of attachment of the slosh
pendulum and the nozzle.

Consider the inertia force and moment transmitted
to the beam by the slosh pendulum. Figure 3 shows the
forces and moments acting on the slosh pendulum. Equi-
librium requires that

Fo= —(Ny [& (xg) — lsi5% (xs)]
Mg = Ml (xg) ~ Lsib (xg)

The force and moment are applied in an opposite sense
to the beam. Similarly, it may be shown that the force
and moment applied to the beam by the nozzle are
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Fig. 3. Free-body diagram—slosh pendulum

Fy= —Ony [ (xy) — Lyt (xx)]
My = Onylyi® (xy) — Iyt (xx)

The equations of motion represent the rate of change
of the bending moment and the shear force along the
beam. The rate of change of the bending moment and
the shear force resulting from the slosh pendulum and
nozzle may be written using the above equations and the
concept of the Dirac delta function. If these results are
added to the equations of motion, a set of equations
may be written which apply throughout the beam, as
follows:

(1) (EIwy) + K AGw, — urttt
+ (Mnlstt — Itdh) 8 (x — x)
+ (Q/Vlwlyié - IN{;);}) §(x—xy)=0

(K'AGwy)” — pid — Mg (@ — Lstd) 8 (x — xg)
— Oy (@6 — Lyidp) 8 (x — xy) = 0

The quantities § are the delta functions.

It is well known that the solutions of the equations
of motion will result in an infinite set of eigenvalues or
natural frequencies o, and a corresponding set of eigen-
functions or mode shapes. The mode shapes are com-
pletely described by the total displacement ¢ and the
bending slope ¢. The equations of motion, Eq. (1), will
be used next to derive some useful properties of the
natural modes.

A motion of unit amplitude in the ith mode may be
represented by
w= ¢i egiwit
wi = ($F — i) eteit
wp = ¢ el

This motion must satisfy the equations of motion, Eq. (1),
leading to

@) (EW)) + KAG(¢: — ¢i) + prioly;
— o} (Mislsds — Lsyi) 8 (x — x)
— o (Myly i — Ingi) 8 (x —xy) =0
[KAG (¢; — ¥:)] + pold;
+ Mnsod (b — Lsys) 8 (x — x)
+ Myod (ds — i) 3 (x —xx) =0

Multiplying Eq. (2) by y; and ¢;, respectively, adding
them together, and integrating over the beam results in

3) — ﬁ Elyy/, dx — / KAG(¢] — ¢:) (95 — ¢,) dx

1 £

=~ of {/ (Pipj + r2¢ig;) pdx

+ [Wse; (x5) ¢; (xs) — Msleti (x5) ¢ (xs)

— Onslss (xs) ¥ (x5) + Lsyi (xs) ¥ (x5)]

+ [Mwes (xn) ¢ (xx) — Wiinlws (xx) ; (xw)

= Miylys (xn) ¥ (x) + Lypi (xx) ¥ (xa)] }
making use of the fact that the bending moment and
shear force vanish at the ends of the beam. Similarly, a
second equation may be written with the subscripts i

and f interchanged. Subtracting the second equation from
the first leads to

0 = (v} — 0}) {/; .(¢i¢j + r2¢¢;) pdx

+ [Msdb; (x) ;i (xg) — Wnslsy; (xg) bj (xg)
— Ml (x5) ¥j (xs) + Isi (x5) ¥ (xs)]
+ [Wxes (xy) & (xx)— Mylyti (xx) b; (xy)
— Mwlydi (xx) ¥ (xx) 1y (xy) ¥ (xzv)]}
It can be anticipated that for i # j, v 7 ;. Thus the term

in braces must vanish for i # j, leading to the first orthog-
onality relationship:

(4) /; . (Pidp; + r2yiy;) pdx

+ [Msdi (x) &5 (k) — Mislsysi (x5) $; (xs)
— Mslsi (xs) ¥ (xe) + Isy; (x5) ¥ (x5)]
+ [Onwss (xx) b5 (xn) — Minlyds (xn) ¢ (x)
— Malvspi (xn) ¥ (xn) + Intps (xx) 95 (x0)] = 0
fori=£j
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For the case i = §, define

&) = / 2(¢%+r2¢2) wdx

+ [Ons (x5) — 20WNslss (xs) ¥ (xs) + L} (xg)]
+ [Mwd? (xx) — 2Wwlyds (x¥) ¥ (xy)

+ Iy (xx)]

The quantity 3%; will be referred to as the generalized
mass of the ith mode.

Consider Eq. (3) again. If i 74, the right-hand side of
this equation vanishes, resulting in the second orthog-
onality relationship:

1 1

®) / Elyig)ds + f WAG (¢ — vo) (&) — ¥;) dx = 0

foriz4j

For i = j, making use of Eq. (5), Eq. (3) may be rewritten
as follows:

@ / “Elyjrdx + / " WAG (8 — 9. dx = Oy

1 1

Equations (6) and (7) will be useful later in writing the
elastic potential energy of the system.

An additional useful relation may be obtained from
Eq. (2). Multiplying the second equation of Eq. (2) by x,
adding the result to the first equation of Eq. (2), and
integrating over the beam leads to

—w’i{/h (xpi + 129;) pdx

1

+ [ Wsxsdi (x5) — WMslsxsys (x5)
— Mddsdi(xs) + Iy (x5)]
+ [Myxxds (xx) — Mwlyxnds (xx)
~ Oyl ) + L s ()1 = 0

Since w; 0 for any of the elastic modes, the term in
the braces must vanish, resulting in

(8) / * (s + 1) pdr

+ [Mnsxsds (xs) — Mslsxsds (%)
— Onslsepi (xs) + Lo (x)]
+ [ Mwrndi (xn) = Malaxyts (xx)
— Myl (xx) + Inti (x0)] = 0

The meaning of Eq. (8) is that the product of inertia of
each of the modes with respect to the x, z axes is zero, and
that the x, z axes are the principal axes.

Next, integrate the second equation of Eq. (2) over
the beam, which yields

m{f $:udx

- s [ (50 — b ()] + Vi [hs (o) — Lyt <xN>1}= 0

Since w; 70 for any of the elastic modes, the term in
the braces must vanish, leading to

©) / " b wdx + g L (x5) — s (x)]
+ Q’}’lzv [¢1 (xN) - lNlll,' (xN)] =0

The meaning of Eq. (9) is that the center of mass of
each of the modes lies on the x axis.
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lll. KINETIC AND POTENTIAL ENERGY

A. Frames of Reference

Consider the motion of the system, allowing the slosh
pendulum and nozzle to move relative to the beam. The
flexural motion of the beam and the relative motion of
the slosh pendulum and nozzle will be measured relative
to a frame of reference which moves with the system, as
shown in Fig. 4. The flexural motion of the beam will be
described in terms of the motion of the natural modes
described in Sect. IL. Thus, the origin o and the x, z axes
of the coordinate system oxz represent the center of mass
and the principal axes of the system with the slosh
pendulum and nozzle locked.

3~% NOZZLE
. . s 40

SLOSH
PENDULUM

Fig. 4. Relationship of vehicle to moving frame
of reference oxz

The flexural translation and rotation, w and w}, of the
elements of the beam and the relative rotation, §5 and 8y,
of the slosh pendulum and nozzle, will be considered
small quantities of the same order of magnitude.

In writing the equations of motion of the system, it
will be necessary to consider the motion relative to an
inertial frame of reference. The motion of the moving
frame of reference will be considered relative to an
Earth-fixed frame of reference, as shown in Fig. 5. The

HORIZON

HORIZON

Fig. 5. Relationship of fixed and moving frames
of reference o’x’z’ and oxz

fixed coordinate system o’x’z” will be considered to be
inertial. The angles § and ¢’ are angles of elevation rela-
tive to the local horizon. The motion of the moving coordi-
nate system oxz is described by the position of the origin
x5, z5 and the rotation ¢ = § — 8’. It will be considered
that the motion in the z direction z§, and the angular
motion ¢ are small quantities.

B. Kinetic Energy of the System

Consider the translational velocity of an element of
the beam relative to the fixed frame of reference (see
Fig. 6). The velocity components referred to the moving
coordinates are

V,=1w— 20 + 2 + 7

. . 2 .
w0+x{,(1—%)-—z{,e

where terms no smaller than the product of small quan-
tities are retained. In this equation, it is assumed that
the elastic motion in the x direction resulting from
bending of the beam may be neglected. The angular
velocity of an element of the beam is given by § — wj.

Ve

Il

HORIZON

P4

Fig. 6. Motion of a beam element

Similarly, the velocity components of the slosh mass
and the nozzle center of mass are as follows:
Ve =t (x5) — Loty (xg) — (x5 — L) 6 + IBg + xhe + 24

Vi, = I[85 — ws ()] (6 + 89)— Ledstwlp (x) + w (x) 0

. 2 .
+x{,(1—£2->—z{,e
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VzN =1 (xy) — Ly (xy) — (xy — Iy) g+ le.N + %ge + 2}

Vey = Iy [8y — wh(xy)] (9 + SN) = Wdytd (xy) + w (x) 0

+ (1 —ff> - %
0 9 Z2y€

In these equations, terms involving w} (xs) w5 (xs) and
w (xv) Wh (xy), which represent elastic motion in the x
direction resulting from beam bending, have been
ignored. The angular velocity of the nozzle is given by
6 + 8y — wh (xx).

The kinetic energy of the system may be written in
the form

o2 .
(10) T=%/ [Vi4+ V24 r2(0 — )] pdx
o1
+ioneve vy + 2 oy vz + v
92 8 zg Zg 2 N( Ty *"N)

+ = (Iy — xl3) (6 + 8y — b (xx)]2

(ST

The mass of the vehicle and the moment of inertia around
the origin o are defined as follows:

anf }de+(ms+(mN

1=f (62 + 1) i + O (s — L)

1

+ Oy (xy — W) + Iy — Onxly

Further, the following relations may be written:

ﬂ xpdx + WMslxg — ) + iy (xy — L) =0

1

f: 1w# dx + s [w (x5) — LSy (xg)]
+ My [w (xy) — Lywl (xx)] = 0

/ " o dx + s Ltd () — Lyt (x)]

+ Oy [ (xy) — Lytdp (xx)] = O

/ B (x> + r2d}) pdx
+ Mg (xs — L) [0 (xg) — It (x)]
+ My (xx — Iy} [ (xn) — Lyth (xa)]
+ (Iy — Wnalf) 5 (xy) = 0

The first two of these equations vanish, since the origin o
is at the center of mass of the system with locked slosh

pendulum and nozzle. The third equation represents the
relative momentum in the z direction of the system with
locked slosh pendulum and nozzle, and vanishes for the
reason cited above. The fourth equation represents the
relative angular momentum of the system with locked
slosh pendulum and nozzle, and vanishes since the x, z
axes are the principal axes. Making use of the definitions
and equations above, the kinetic energy, Eq. (10), may
be re-written as follows:

1 5 . Y, . . ?
T= E{[ (W2 + 12152 pdx + Mg [ (xg) — Lab (x5)]2

1

+ My [0 (xy) — Ly (212 + (Iy — INNlR) W0° (xzv)}
+ %Iéz + %@n&gz + %cmé;z + % 183 + —;-INé?v
+46 (%5 (Mslsds + Mnnlydy) — 85 (Msdsxs — I)
- sN (Omylyxy — Iy)]
+ (%e + %) (Q/}’lslsss + Q’nzvlzvszv)
+ &} {Q’l’lsls [(85 — wh (x5)) ss — 85 (xg)]
+ My [(8y — ) () ) By — Bytbfy (x)])
+ 8.3 [l (x5) — Isth (x5)]
+ 8y [Myluth (xy) — Iyt (xy)]

The flexural motion is described in terms of the natural
modes as follows:

(11) w(x,t) = 3 ¢ (x) q; (1)
wh(x, 1) = Ty (%) q: ()

where q; is the ith generalized coordinate of flexural
motion. In terms of motion in the natural flexural modes,
the kinetic energy may be written as follows:

— 1 p 1 j2 _l_ M i 1572
(12) T= 5};0%0% +510 +3 Onxge + ) Oz

X A{ =% [Mlsyi (x5) 85 + Mwlathi (xv) 8x]
+ [Mlsdi (xs) — Lei (51 8y
+ [Mnlyds (xx) — Ints (xx)] ézv}
+ ?: g% (=i () 85 — Muluy (xy) 8]

+ 8 [ (MdeBs + Mnly8y)
— Mslsxs — 1) 85 — Mlyxs — 1y) 8]
+ (#e + 2) (Malsds + Malydy)
+ % (MelsBss + MalyByBy)

making use of the first orthogonality relation, Eq. (4), and
the definition of generalized mass O1:, Eq. (5).



Then the following derivatives, which will appear in
the Lagrange equations of motion for the system, may be
written:

d foT T .
(13) :ﬁ(a) —6%]_,- = NG + [(WMslspi (x5) — Isyi (x4)] 3s

+ [Omnlydi (xy) — Iny;i (xy)] .8.1\!'
— OMslsys (x5) K08
— Onwlwys (xy) xosN

d (T o

a (az) = (mxy

d T

a <§zo> Oz, + Ongl sss + Mwly SN

d (3T oT o 3
E(%) — " 16 — (Onslsxs — Is) 35

_ ((leNxN — IN) .g)v

+ Onsls®ds + Mnalyiedy

d (aT oT

a(g) - 68 = Igss + E [Onsls; (xs)
— Igp; (x)1 G — (Mslsxs — L) )
- 2 Onsls¥s (xs) g5
+ OnslsZs + Msls¥ods

%(ﬂ) = 1B+ S 0uhs ()

aSAv ..
— Iy (xn)] G — (Mnlyxy — Iy) 6
- E.Q/nwlzv\bi CMEAR
+ Mylnzt + MnlaXedy
In Eq. (13), the products of small quantities have been
neglected. Further, ¢ has been set equal to zero, requiring

the fixed and moving coordinates to coincide at the instant
represented by the equations.

It is convenient to describe the acceleration of the
moving origin in another form. The quantities which
describe the motion of the origin o0, shown in Fig. 7, are
defined as follows:

V = velocity
6 = angle of elevation
« = angle of attack

v = flight-path angle

TECHNICAL MEMORANDUM NO. 33-147

HORIZON

zz'

Fig. 7. Motion of the origin o of the moving
coordinate system oxz

It is well known that the acceleration of o consists of a
component V along V and a component Vy normal to
V and in the upward direction. Then
(14) =V

% = Va — Vy

assuming « to be a small angle.

C. Potential Energy of the System

In terms of the displacements in bending and in shear,
the flexural potential energy in the beam is

T2 z2
(15) U= é/ Elw}? dx + -é/ KAG (W — wj)?dx
£4 1

Making use of Eq. (11), the flexural potential energy of
the beam in terms of motion of the natural modes is

1 B
=522m{/Emwm
1 7

+ / KAG (7 — i) (¢ — ¥5) dle

With the aid of Eq. (6), the second orthogonality rela-
tionship, and of Eq. (7), the energy becomes

1
(16) U= =3 Misia}
1

The following derivative, which will appear in the
Lagrange equations of motion for the system, may be
written:

oU

(17) 52 = Q’Vlwﬂ.
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IV. GENERALIZED FORCES ’

The generalized forces contained in the Lagrange
equations of motion are defined as the virtual work done
on the system by the external forces per unit virtual dis-
placement. It will be necessary to consider the thrust
force, aerodynamic forces, gravitational forces, the nozzle
actuating moment, and damping forces.

A. Virtual Work

The thrust force acts at the point of attachment of the
nozzle and consists of a component T tangent to the beam
and a component T8, normal to the beam, as shown in
Fig. 8. The component T8y results from the small rotation
of the nozzle 8.

Consider the virtual work done by the thrust force
in a flexural virtual displacement 8w (xy) of the point of
attachment. It will be assumed here that the virtual work
resulting from the tangential component T will be
neglected. The effect of the above assumption is to ignore
the buckling effect of a tangential compressive force on
the beam, which is not likely to be important unless the
vehicle acceleration is very high and the vehicle is very
slender (Ref. 7). The virtual work done by the compo-
nent T8y in an elastic virtual displacement 8w (xy) is

SW = —T8,8w(xy) = — T8y 3 ¢i (xy) 8q;

The virtual work done by the thrust force in a small
virtual displacement of the moving origin o, given by
8x5, 8z, is

SW = Téxf, + T [wh (xy) — 8y] 82
= T} + TIS gu (en) 0 — 8y 82

Further, the virtual work done by the thrust force in a
virtual rotation 86 is

W =T [w(xy) — xywh (xy) + x58,] 86
W=T {2 [¢: (xy) — Xy (xx)] q; + xNSN} 80
Consider the effect of the aerodynamic forces, repre-

sented here by a drag force D and a lift force L in the
negative x and z directions respectively. The drag and

ba
WE’ (XN_‘____ _
4

z

Fig. 8. Thrust-force components

lift forces per unit length will be represented by D’
and L’. Further the aerodynamic moment around the
origin o will be represented by M, considered positive
in the sense of positive 8. The virtual work done by the
aerodynamic forces in an elastic virtual displacement dw
may be written as

W = —f’L'swdx

1

=-3 [/hmﬁidx] 3q;

No virtual work will be done by the drag forces in
an elastic virtual displacement consistent with the
assumption that the elastic displacements in the x direc-
tion are zero. The virtual work done by the aerodynamic
forces in a virtual displacement of the moving origin o
is as follows:

8W = —D8x, — L8z

where D and L are the total drag and lift forces. The
virtual work done by the aerodynamic moment M in a
virtual rotation is

SW = M§6

The virtual work done by the gravitational forces may
be determined most easily by making use of previous
results. Using D’Alembert’s principle, it may be expected
that the gravitational forces per unit mass g sin 6 and
g cos § will have the same effect as the inertial forces per
unit mass %, and —%,. The terms involving % and —%;
in Eq. (13) represent the negative of the virtual work
done by these inertial forces per unit virtual displace-
ment. Making use of Eq. (13), the virtual work done by
the gravitational forces may be written as

8W = 3 [Onslsy; (x5) 85 + Wwlnis (xv) 851 gsin 0 8q;, — Ongsin 8 8x) + Ong cos 8 82 — [Mslsds + Muly8y] gsin 0 86

ki

+{ I:E Wnslsys (xs) qi — Q’I’lslsss:l gsind + Oplsg cos 0} 3(8y)
+{[2.Q’nzvlzv'l/i (x¥) q: — Q/nzvlzvszv] gsin 6 + (Nylyg cos 0} 8 (8y)
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| " The nozzle actuation moment My is the moment exerted B, Generalized Forces
by the beam on the nozzle and will be considered positive
in the direction of positive nozzle rotation 8. Because of
the equal and opposite reaction on the beam, the virtual
work done will vanish except for a virtual rotation of
| the nozzle. Thus the virtual work done by the nozzle (19) oW

The generalized forces are the coefficients of the vir-
tual work expression, Eq. (18), and are expressed as

‘ ; . Q= = —20M:li0iq; + Mslsg sin 0 ¢; (xg) 85
‘ actuation moment is 3q;
SW = M8 (8y) + [Onylyg sin 0 ¢, (xy) — Tep; (x4)] 84
Consider the effect of structural damping, slosh damping, _ / = L'¢; dx

and damping resulting from nozzle rotation. Aerody- o

namic damping effects are contained in the aerodynamic

terms. If it is assumed that coupling of the elastic sW )

natural modes resulting from structural damping is Oz, = B, T —D—Ongsiné

negligible and, if the structural damping is represented
in terms of an equivalent viscous damping, the virtual
work done by structural damping may be written as _Sw _ ) o _
Qz") 826 T 2 ‘l’t (xN) q; TSN L+ Q’}’lg cos ¢

k4

| W = _2Z(miCi“’idi8qi
| W

| In the above relation, the term ¢; represents the damp- Qo= YR T ; (i (xx) — 2w (xw)] g
? ing ratio for the ith natural mode. Similarly the virtual
work done by the slosh damping may be written as ~ Onslsg sin 6 85

“ + [Txy — Minlygsin] 8y + M
W = — 21l <l§> 858 (85)
S

sW .
where (s represents the damping ratio for slosh in a 1-g Qs =73 ol 2; Mnslsg sin 6 ¥, (x) g5
force field and (g/l)% represents the slosh natural fre-
quency in the same condition. The virtual work done — Mislsg sin 6 8

by the nozzle damping forces may be written as

1%
g\¥%:
. —2I§(—) 85 + Ongleg cos 8
W = —Cy8,8 (8y) S8\ Ig § 58

where Cy represents the viscous damping moment per W

unit rotational velocity of the nozzle. Qsy =3 B0 2 Mwlvgsin 0 ¢; (xy) g5
N i
The virtual work done by all the forces considered — Mylygsin 0 8y
may be obtained by summing all of the virtual work )
equations as follows: — Cydy + Mylygcos 8 + My

a8 w=3 {_ / " L% di + gl sin 0 g (54) 85 + [Dbyg sin 6 s ) — T (10)] 85— 2%5"‘“di} il

+ [T — D — Ongsin 4] 8%, +|:T2¢i(xy)qi—T8N— L+Q/ngcos0] 8z

+ {T 2[4),‘ (xN) _lelli (xN)] q; '—(n'lslsg sin 0 SS+ [TxN - (leNg sin 0] SN + M} 80

%.
+ {E Mslsg sin 8 ¢; (x5) gi — Mslsg sin 6 85 + Mglsg cos & — 20l (Ti) Ss} 3 (3g)

+ {E Mnlyg sin 0 ¢; (xy) g; — Minlyg sin 6 8y + Wnylyg cos § + Gny — CNéN} 8 (3x)
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V. EQUATIONS OF FORCED MOTION

A. Lagrange’s Equations of Motion

The Lagrange equations of motion for the system are

d (T oT | aU _
o ()5 E e

Making use of Eq. (13), (14), (17), and (19) the equations
of motion for the system become

21 g + [Onslds (xs) — Iods (x9)] B
+ [y () = Iyt (x2)] By
+ 2Miioid; + WNiolg;
— Ol (V + gsin 0) y; (xg) 8
— [0Maly (V + gsin 8) ; (xy) — Tebs (xy)] 8

+/L’¢idx=0 i=1,2 -

WV — T+ D+Qpgsinf =0

m (VOI - Vy) + Q/nsls.s.s + Q/anN'S.N
—T3¢ilxy)q:
+ T8y —Migcosd + L =0

16— (Mdsxs — 1) g.\' — (Mylvxy — Iy) -S.N
— T3 [¢i (xn) — xa9i (xy)] g,

+ s (V + gsin 0) 8
+ [Onyly (V + gsin ) — Txy] 8y — M = 0

10

Isgs +3 [Mslsds (x5) — sy (x5)] G
= (Mslsxs — L) g

Y. .
+ 2Ll <2g:) 85 — ZMsls (V + gsinb) ¢, (x5) q;

+ ONels (V + gsin 8) 8¢
+ Mgl (Va — Vy — geos §) = 0

IN.S.y + :2 [(WMnlydi () — Iy, (xx)] g,

— (Miwlyay — 1) 6
+ Cy8y — S Ouly (V + gsin0) y; (xx) 4

+ Onyly (V + gsin @) 8y
+ Oiyly (Va — Vy — gcos ) — My =0

B. Equations of Forced Motion

It is assumed that the motion of the system consists of
the sum of a forced motion and an undisturbed or
trimmed motion. The motion of the system is repre-
sented by

(22) qi=qir + q:
V=V,+V

a=ar+a

8=0,+8
y=yrt7y
Sszssr+§s
8y = 8yp + 8y

where the subscript T represents the trimmed motion
and the bar represents the forced motion. It is further
assumed that the trimmed motion varies slowly with time
and is essentially constant. The aerodynamic forces and
nozzle actuating moment are represented by

(23) L=L,+L
D=D,+D
M=M,+M

My =My, + M,



The equations of motion, Eq. (21), for the trimmed
motion are

WMswiqir — Misls (Ve + gsin b7) ¥; (x) 87
— [Mxly (VT + gsin fz) ¢; (xy) — To; (xy)] Sxr

T2
21

OV, — T + Dy + Qpgsin 6, = 0

WMVzar = T 3 i () Gir + T8yr — ONgcos by + Ly =0

-T ; (i (xy) — 2yy; (x)] Gir + Mls (Vi + gsin0y) 8gr
+ [Mxly (VT + gsinfy) — Txy] 8yp — Mz =0

= 2 sls (Vy + gsin0y) y; (x5) qir
+ Mels (VT + gsin fy) 85p
+ WMsls (‘-/TaT —goosfy) =0

- _EQ/VINZN (VT + gsin 07) ¢; (xx) qir
+ Wnyly (Vr + gsin07) Syr
+ Q/nzvlzv(‘}rar —gcosfy) — My, =0

The equations of motion, Eq. (21), for the total motion
are

M:Gs + [Mlsths () — s (x9)] B
+ [OMabyebs () = L (x)] B
+ 20’)’15(5‘0551 + Mo (qir + q;)
~ Mls [V + V + gsin (07 + )] ¥ (5 (87 + 3)
— (Ml [V + V + gsin (B + D] ¢ (x3) — Ty ()

P

X (8yp + 8y) +[ (Lp+ 1N ¢idx=0

21

MV +V) =T+ Dy + D+ Qngsin (6, + 8) =0

MUz + V) (ar + D = (Vo + D51+ Oadide
+ My — T S 9: () (@i + §) + T (Syp + 88)
1 — Ongcos(@y +8) + Ly +L =0
16 — Onshyts ~ 19 3y ~ Oulyxy — 1) By
= T30 (xa) = xbi (20)] (@7 + )
+ s [Vp + V + gsin (0, + B)] (8¢p + B)
+ {Mnyly [Vy + v+ gsin (8, + 6)] — Txy}
X (8yp + 8x) — My —M =0
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185+ 0l (x) = Iobs (91§ — Omslys — 1)

% 2 . 2 -
+ 20l (lﬁ) 8c — D Mels (Ve + V + gsin (6, + §)]
X W, (x5) (qir + q3)
+ Onsls [VT +V+ gsin (67 + 0-)] (Ber + ss)
+ Q/nsls [(VT + ‘7) (ep + @)
- (Vg +‘-7))7 ~ gcos(f; + 5)] =0
ISy + 3 Oulyss () = s (2)] G = Oalyes — 1) 0

+ Cyly — S Wl [V + V + gsin (67 + 9)]
X ¢ (xn) (qir + G3)
+ Wnly [Vp + V + gsin (6, + )] (Syr + 8x)
+ Wby [(Vy + V) (ar + D = (Vo + V) §
—gcos(fy + 5)] — My, — ﬂN =0

The trigonometric terms in the preceding equations may
be expanded to

sin (6, + 67) = sinf, + g cos 07

cos (6, + 0’) = cosf, — f sin 0,
assuming 6 to be a small quantity.

If the equations for trimmed motion are subtracted
from the equations for total motion, the following equa-
tions of forced motion result

24)  MaGs + [l (x) — Lo (5] B
- [Dldhs (i) — Loy (2x)] B
+ 2Q/niCi“’iéi + Mi0iq;
— Ol (Vi + gsin 87) g (x) B

— [yly (Vo + gsin 67) ¢ () — Tp; (x4)] By

)—T
+ | L'gidx=0

O/n‘=7+ D +Q’}/zg0-coseT =0
Q/}/l (‘.’TC-! - VT?) + Q/nslsg.\'
+ Mylydy — T ¢ (x4) T

+ T3,y + Qngsinb, 8§ +L=0

1§ — Mdts — 1) 85 — Ml — 1) By
= T Sl () = 2ot ()] T
+ Ol (Vy + gsin ) 8
+ [Wnly (Vo + gsin ;) —Tay] 3y —M =0
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Is5s + 3 [OMdeps (1) — Lot (x9)1 G
- g %
- (Qﬂslsxs — 1) 0 + 21 (T) 3
S
— 2 Ongls (Vy + gsinby) y; (%) 7
+ WMls (Vy + gsin 8y) 8
+ Ol (Vo& — Vb + gsin 8,0) = 0

Ly + 3 [y (1) — Intsi (52)1 G

— (Mylyxy — 1) 5 + CN.S-N
— S Ouly (Vo + gsin 07) i (xy) G

+ Onnly (VT + gsin §;) 5N
+ Mly (V@ — Voy + gsin6,6) — My = 0

In Eq. (24), terms involving the products of forced-motion
variables have been ignored. Further, since the trim
variables qir, ar, 85, and 8y, may be expected to be
small quantities, the products of these variables and the
forced-motion variables have been ignored. In addition

to Eq. (24), equations are needed for the aerodynamic’
forces and the nozzle actuating moment. The aerody-
namic forces will be discussed in Sect. VI. The control-
system equations needed to specify the nozzle actuating
moment will not be discussed here.

C. Forcing Conditions

The equations of forced motion are suitable for an
analysis of the forced motion resulting from disturbances
involved in the launch and boosted flight of a rocket-
boosted vehicle. For the important problems involving
atmospheric motion such as gusts, turbulence, or wind
shear, the forcing function would be contained in the
aerodynamic lift and moment terms. For problems such
as the determination of the forced motion resulting from
a maneuver or a control-system malfunction, the forcing
function would be contained in the nozzle actuating
moment. Further, if the system is in motion at the instant
of launch or stage separation, the resulting motion may
be studied by considering the appropriate initial value
problem.

V1. AERODYNAMIC FORCES

The momentum method will be used to determine the
aerodynamic forces (Ref. 6, pp. 418-420). This method
is applicable to small disturbances of slender vehicles at
velocities up to low supersonic. The method is appro-
priate for the boost period of large rocket-boosted vehi-
cles, which are often slender and which typically do not
experience velocities beyond low supersonic during that
part of the boost period where aerodynamic forces are
important.

12

Consider an Earth-fixed frame of reference o’ 2’z
(shown in Fig. 5, Sect. IIIA). The frame of reference
o’ x’' 7’ is also considered to be at rest relative to the air
mass. The motion of the moving origin is given by the
coordinates x, and 2z, and the relative orientation by
e =0 — #’. It is assumed that z} and ¢ are small.

The method to be used is based on the assumption
that the disturbed air flow is two-dimensional in planes
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normal to the direction of flight. Consider the air con-
tained in the volume bounded by the planes x’ and
x’ 4+ dx’. Tt will be assumed that the disturbed flow is in
the z’ direction. The displacement of the beam in the z’
direction at x” is given by

F=z—extw
where

x=x" —x]
Thus, the velocity of the beam in the z” direction at ' is

=2 —ex— ex + w+ wx

But
2 =V(a—¢)
i=6
x=—x,=-V

Making use of these equations, the velocity of the beam
in the z’ direction at x* becomes

Y=Vi—w)—fx+

Assume that the momentum of the air contained in the
differential volume may be written as

dl,. = pAd¥'[V (a — w') — fx + ]

where pA represents the virtual mass per unit length of
a cylinder having the same area and shape as the vehicle
at the point considered. The force per unit length applied
to the air mass will be equal to the time rate of change
of the momentum per unit length. Thus, the lift per unit
length applied to the vehicle may be written as

,_d(dL,
@) L= dt<dx’)

= pV2 [—Ala + (Aw')']
+ oV {[(Ax) + A16 — [(AdY + A1}
+ pA[—V(§ — &) — 26 + D]

The last line of Eq. (25) represents the product of the
virtual mass per unit length and the lateral acceleration
of the vehicle. It will be assumed that the density of the
air is small compared with the density of the vehicle and
the last line of the equation will be ignored. If the elastic
deflections are written in terms of the natural modes,
Eq. (25) may be written as

(26) L’ = pVv? [‘A'a + 3 (AgY) qi:l

+pV {[(Ax)' +Al6 — S [(Ad:) + Agl] di}
In order to account for atmospheric motion such as gusts,
turbulence, or wind shear, the quantity o will be replaced
by & + ay,, where a,, is the angle of attack resulting from

atmospheric motion.

The total lift L may be determined by integrating the
lift per unit length L’ over the beam, as follows:

@7) L=,V {[A (x,) = A(x,)] (@ + ay)

+ S[A (x2) ¢ (x2)— A (x) ¢5 (x1)] qi}

+ pV{l:A (x,) X, — Ax) %, + /IzAdx]é

-3 |:A (x2) $i (x2) — A (%) ¢ (x1)

+ f A, dx]éi}

Similarly, the total moment M, positive in the § direc-
tion, becomes

28) M= f S dx

1

= sz{—I:/IZA’xdle (a + ay)
+2[f$’(A¢;)'xdx qi}
+ pv{[/‘“ [(Ax) +A] xdx] ]

> [/ 2[(A¢i)’ + Adf] ’Cd’J ql}

Further, the following integral, which represents the
generalized forces acting on the elastic motions, may be
evaluated:

(29) / " L, dx

[ [ o]
+3 / (G & dx] q,-}
+ oV {[ / h[(Ax)’ + Al g, dx] 6

- z[ f UAd;) + Ad}l ¢ dx] d,-}

13
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Equations (27), (28), and (29) may be used to determine
the aerodynamic forces corresponding to the total motion,
the sum of a forced motion and a trimmed motion, de-
fined by Eq. (22). Similarly, the aerodynamic forces
corresponding to the trimmed motion may be deter-
mined. The difference between the total and trimmed
aerodynamic forces represents the aerodynamic forces
resulting from the forced motion. Thus, the aerodynamic
forces appearing in the equations of forced motion,
Eq. (24), may be written as follows:

(30) L =pVi {[A (x) — A)] @ + @)
+ TA(xy) ¢) (x2) = Ax,) ¢ (x1)] f?«i}

+ pVr {[A (x,) %, — A(x,) %, +/‘I2A dx]é.-

> [A (x2) $i (x2) ~ A(x1) pi (x1)

¢ ["anas]il

M = pV3 { - [ [ A'x dx] (a + ay)
A worl
+ oV, {U‘h[(my + Al xdx:l i
- ;[ f " Lag) + Ag1) xdx] a}

ﬁ L'¢,; dx
- pvg{ - [ / oy dx] (& + ay)
+ 3 [ f g e dx] (7,-}
vV, {U [(Ax) + Al 6, dx] §
- ;[ / ClAn) + Agil 4, dx] é,-}

In Eq. (30), products involving the forced-motion
variables V, @, @, 4, q;, and 8 and the trimmed variables
ar, Gir, O, qir, and 6y have been ignored.
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The aerodynamic forces are customarily expressed in
a form involving nondimensional coefficients. Define non-
dimensional time r as

(31) T =1

where I, is a reference length. Then the aerodynamic
quantities, Eq. (30), may be written as follows:

(32) L= %pv;.A,[cm @+ a)+ 3 Cqu,—i

px
dg L,
+ CL‘;E + E CL&:‘ d'r ]

M= %pvg.A,l,[Cm @+ ap) + 3 Cuqi%

r

—
]
P:l
5
a
=
1
o
R
<
e
>
- 1
O
£~
"2
i
+
R
g
+
-M
9]
=3
2
NE'

de l
+ qua'zf— + ; qu,;j .

where A, is a reference area and the aerodynamic
coefficients are

(33) Cuo = ——[A(x) = AGs)

2L (A (x) 4 (x2) — A (&) ] (30)]

Cpo= Azl |:A (x)x, — A (%) x, + / A dx:l
2

CLq.; = Ar I:__A (xz) ¢i (xz) +A (xl) ¢i (xl) _/;MA‘M dx]

2 T,
ATlT \Ll A x dx

Cur, = / (AgT) xdx

Cg, =

Cua =

1

0”3:721?[‘ [(Ax') + A] xdx
9 [

= - Xl—r' .. [(Ag;) + Agilxdx



» 2 F23
Cpja= — AL Alg;dx

T 1

2lr - AV
;95 - T/‘; (A‘IS]) ¢i dx

0
|

9]
il

2 [=
W = A0 / [(Ax) + Al &; dx

k2

2 o
Cog; = — 1 /; ((Ag;)" + A¢jl ¢ dx

T 1
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Generally, some of the terms in the aerodynamic coeffi-
cients, Eq. (33), are negligible. The terms involving the
angle of attack (a + a.,) are usually important in all three
equations in Eq. (32). The terms involving the pitch rate
(d6/dr) will usually be negligible except for the term in
the moment equation. The terms involving the elastic
motion will often be negligible, but may be important if
the vehicle is sufficiently flexible. In the third equation,
the terms involving coupling of the elastic modes, i+,
are often unimportant.

. NONDIMENSIONAL EQUATIONS

It is usually convenient to nondimensionalize equations
of motion involving aerodynamic forces. The equations
for forced motion, Eq. (24), will be written in nondimen-
sional form, making use of the equations for the aero-
dynamic forces, Eq. (32). The nondimensional time r is
defined by Eq. (31). The derivatives with respect to =
will be designated by the operational notation

d
b=
L
Dz_dfz

The equations for forced motion may be written in the
form

(34) 2 (D2 + Cy;D + Ki)) T 44 C,.Df
+ ((lesD + KN) (Q/}/ZMDZ + KIN) 8
+Kiaa=—Kiaaw l:1,2,3,' .o
(=MD + Kpy) 7+ 3 (CyiD + Kyo) 5;-"

+ CyoD6 + WMysD28s + (MysD? + Kyy) 8y

+ Kyua = Kyawaw

(MesD? + CooD) G + E (CoiD + Koi) +-

L
+ (MasD? + Kag) 85 + (MoxD? + Koy) 8y

+ Koot = — Kooty

(MsD? + CssD + Kse) s + 3 (MD? + Kei) 7+

+ MDD + (—MsyD + Key) 7 + KeaZ = 0

(MxxD? + CyyD + Kyy) 8 + 3 (MmyiD? + Kyi) -

i

+ O yeD?0 + (=OMyyD + Kyy) 7 + Kyo& = My

,NIN

The equation for forced longitudinal motion, the second
equation of Eq. (24), has not been repeated in Eq. (34)
since it is not needed in determining the flexural motion.
The nondimensional coefficients are defined as follows:

O = i
(35) M .
Q/nii =0 fOl'l:,&]
— oy = Wsls
Q/nis - Q/nSi - Q’nr lr d’i (xS) O/n l, [lrlpl (xQ)]
v Iy
Miy = Myi = Pty L

o, 1, P10~ ,m T s ()]

15
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_m Al .
M =5, Kie =0 50m, €
s L
WMys = Oflqsyz-(W‘jlf Ky = (()Z)n/l Vi L sin @
Q/}/ZN lN
Wiwy = A
Wty = Moy = 50,7, Ky = 935 Cy, = e [l )
I
Q’Vloe Q/nrlf— K = Tl,.
Y
_ Q/ns_lg Xs Is Vi
m Q/nso = Py +
., lr lr Q/nr?
A’I’ T Tlr
Oy by =x Ly Kye = p g, \ Con = Cno ) ¥ 1,3
Wew = Wlwe = — (er—l:r on. Lz "
Al,
I o = CLa
Mss = .5 Koo = =P 30m,
I A
My = 5, K= —p3 mz Cuq, — Cm vz =L [; (xy) — xx¥s (xx)]
Wi («»il,) Al
Cii=2Li—~\5—)te a;4; — Q/nsk . Al
Q/n VT 2%1 Kas - (-m' lr (mv% P 20,}/1 CDO
Al . _
Cij p—2Q’I/Zr 94 fori=£j Ko = Ww v (Tl Al c )_ Tl, xy
Al, o, L \mv: Pem ™) amVi L
Cio = Py, Coi Al
Koo = —p —= Cya
Al, 2m,
Cyi PMCW,
Tl Al
Arl, Q/nq =8 T Tt C )
CYO =P 20/}/1 CLG. KSS anr r (07/2‘/,% P ZQIn Do
6 — — Cys 5 B
Coo = ~P 20, “* K=y, 7, vz S or
Al,
Coi = —p 52 Cyg. s s [ TL Al
2 Kso =Ty, 7, Nz~ #20m e
— IS glr & e
Css = 285 Q/n,]g( 2° 1, Kow = Onw by T, o Al C >
Cy W m, L\ Onve U 2m TP
Cyv =
m,LV, Ko = M by Al, c [Ly; ()]
O ol \? Al, ¥ T On, 1 P2y P Q/)/IVZ Wi (Xy
K= am \v: ) **2m, Cuu
Q’VIN lN gl
Al K =L sin §
Kij = p oy, Cans YT, 1, Vi !
Ol A Tl, Oy Wf TL AL )
Kis= Kgi = Wﬂri(p 20n =~ Po - Q’NV%) Kya= W, L. \mV3 P 2om CDO
X [l ()] _ i
M — N
Onw 1 Al Tl, ¥, v
K"”:owf{("zfm % wvz)”"“(x”)] e
Tl g (xy) In Eq. (35), M., A,, and I, are a reference mass, area,
Q?LVZ ! and length, respectively.
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VIIl. DISCUSSION

The determination of the forced flexural motion of the
vehicle under consideration requires the solution of
the equations for forced motion of the system, Eq. (34).
These coupled equations describe the motions of the
natural modes of flexural vibrations of the vehicle, the
translational and pitching motions of the vehicle, and
the motions of the engine nozzle and liquid fuel. In addi-
tion to the given equations, control-system equations are
needed to specify the engine nozzle actuating moment.

Given the solution for the motion of the generalized
coordinates of flexural motion g;, the flexural displace-
ments w and the rotations wp may be determined by
summing the motions in all the natural flexural modes, as
given by Eq. (11). With a complete knowledge of the
flexural motion, the bending moments and shear forces
in the vehicle may also be determined.

Forcing conditions which may be considered include
atmospheric motion such as gusts, turbulence, or wind

shear, thrust-vectoring resulting from control-system com-
mands or malfunctions, and an initial disturbance. The
effect of atmospheric motion is contained in the term
., the angle of attack resulting from atmospheric motion.
The effect of control-system commands is contained in
the term My, the nondimensional nozzle actuating
moiment. Ignition or separation transients may be treated
as initial value problems.

The natural modes and frequencies of flexural motion
required in developing the equations of motion may be
determined by any of the standard methods for the
analysis of beam motion (Ref. 6, Chap. 4). Information
needed for the approximate representation of the fuel
motion by means of a simple pendulum is available
in the literature (Ref. 5). The needed aerodynamic
coefficients were developed in this Memorandum using
the momentum method (Ref. 6, pp. 418-20). However,
the coefficients may be determined experimentally or by
another appropriate analytical method.

17
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NOMENCLATURE

damping coeflicient, nozzle motion

total drag, negative x direction

drag per unit length, negative x direction
flexural rigidity of beam

moment of inertia, vehicle, around c.g.

moment of inertia, nozzle, around hinge
moment of inertia, slosh pendulum, around hinge
shear rigidity of beam

length, nozzle hinge to nozzle c.g.

length, slosh pendulum

reference length

total lift, negative z direction

lift per unit length, negative z direction

mass of vehicle

generalized mass, ith flexural mode

mass, engine nozzle

mass, slosh pendulum

reference mass

total aerodynamic moment, 4 direction

nozzle actuating moment

generalized coordinate, ith flexural mode
generalized force, ith flexural mode

generalized force, rigid-body motion, x direction
generalized force, rigid-body motion, z direction
generalized force, engine nozzle

generalized force, slosh pendulum

Qs

8y
3s
Ci
s

bi
Vi

generalized force, pitching motion

radius of gyration of beam cross section around
lateral axis

thrust force

speed of vehicle

total deflection in flexure

bending deflection

shearing deflection

location, aft end of vehicle

location, forward end of vehicle
location, nozzle hinge

location, slosh pendulum hinge

angle of attack

angle of attack resulting from atmospheric motion
trajectory angle above horizon
deflection angle, engine nozzle
deflection angle, slosh pendulum
damping ratio, ith flexural mode
damping ratio, slosh pendulum, 1-g force field
elevation angle above horizon

mass per unit length of beam

air mass density

air virtual mass per unit length

Vt/l,, nondimensional time
deflection shape, ith flexural mode
bending slope shape, ith flexural mode

natural frequency, ith flexural mode
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